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Properties of the Polynomials 
Associated with the Jacobi Polynomials 

By S. Lewanowicz 

Abstract. Power forms and Jacobi polynomial forms are found for the polynomials W( ) 
associated with Jacobi polynomials. Also, some differential-difference equations and evalua- 
tions of certain integrals involving W( -) are given. 

1. Introduction. Let w be a nonnegative function defined on an interval [a, b] for 
which all moments 

mn:= J xnw(x)dx, n = 0,1,.... 

exist and are finite, m 0> 0. Let { Pn } be the monic polynomials orthogonal on 
[a, b] with respect to w. The polynomials 

lq(X):= 
b Pn(x) -Pn(t) w(t) dt, n = 0,1,.... 

are called the polynomials associated with the Pn. As is well known, { pn(x)}, 
{ qn(x)} are linearly independent solutions of the recurrence formula 

(1.2) Yn+l-(x-an)Yn + bnYn-1 = ? n = 0,1... 

where 

(1.3) an:= (XPn9Pn)/(Pn9Pn) n >0 , 
bo := mog bn:= (Pn9Pn)A(Pn-19Pn-1)9 n 1 1, 

and 

(f, g):= 
b 

f(x)g(x)w(x) dx. 

The initial conditions are 

P 1(X):= 0, pO(x):= 1 

and 

q-l(X):= -1, qo(x):= O, 

respectively. 
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Let us consider the continued fraction 

(1.4) bo bi 
x-ao - x - a1 

where an, bn are the coefficients of (1.2) given in (1.3). The nth convergent of (1.4) is 

bo b- bl_ q1(x)q n>l. 
x -aO- x -a X -an- Pn(x) 

If [a, b] is a finite interval, then 

(1.5) rn qi (x) F(x), x [a, b], 

where 

(1.6) F(x):= f (t)t 

holds by Markov's theorem [18, p. 56]. In this case, the functions of the second kind, 

(1.7) fn(x):= F(x)pn(x) - qn(x), n > 0, 

represent the minimal solution of (1.2), normalized by f 1(x):= 1 (see [6]; or [19, pp. 
53 ff.]). 

Note that the set of polynomials { qn } belongs to a family of the generalized 
associated polynomials { Pn(.; c)} which are defined by 

pnll(x; c) -(x - an+c)pn(X; c) + bn+,pn_l(x; c) = 0 n = 0,1,..., 

p_i(X; C) = 0, po(X; C) = 1. 

Here c is a fixed nonnegative integer, although often it can be taken to be an 
arbitrary real positive number. Obviously, qn is a constant multiple of Pn-l('; 1), 
n = 0, 1, .... 

According to Favard's theorem, the set {qn} is orthogonal with respect to some 
weight function u. Nevai [14] gave a formula for the weight function of the 
polynomials associated with polynomials belonging to a large class which included 
the Jacobi polynomials. The generalized associated Legendre polynomials have been 
studied by Barrucand and Dickinson [3]; their weight for these polynomials was 
contained in Pollaczek's earlier results for his set of orthogonal polynomials with 
four free parameters, which includes the associated Gegenbauer polynomials (see [5, 
Vol. 2, Section 10.21]; or [4]). Bustoz and Ismail [4] have found the orthogonality 
relation for the generalized associated q-ultraspherical (or q-Gegenbauer) polynomi- 
als. Askey and Wimp [2] determined the weight function and found an explicit 
formula for the generalized associated Laguerre and Hermite polynomials. A theory 
developed by Grosjean [7], [8], [9] permits us to deduce an explicit formula for the 
weight function u and a procedure for obtaining the basic interval [c, d] c [a, b] 
associated with the orthogonality property of the sequence { qn }. These results are 
obtained for an arbitrary weight w being piecewise continuous as well as containing 
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discrete mass points. For instance, if w is piecewise continuous, then [c, d] = [a, b] 
and 

(1.8) U(x ) dw(x) , a< < b 

MO a t -x M 0 

with f meaning the Cauchy principal value integral. 
In this paper, we give some properties of the polynomials Wn(0 ? associated with 

the classical Jacobi polynomials. More specifically, we show that Wn(o , n >O, 0 
satisfies a linear nonhomogeneous differential equation of second order. Further, we 
obtain explicit formulae for Wn(o ). Also, we give some differential-difference 
equations and evaluate certain integrals involving Wn(t ). All these results can be 
found in Section 2. Similar (neater looking, however) results for the polynomials 
associated with Gegenbauer polynomials are given in Section 3. 

2. Polynomials Associated with the Jacobi Polynomials. We use the standard 
notation Pn($,a) for the Jacobi polynomials, 

_nof)()=( 1)n 2I -n, n + 1 (2.1) Pn. )(X) ( +! 2F1( a+1 2 
a > -1, , > -1, n > 0, 

where X:= a + ,B + 1, and (c)n:= r(c + n)/F(c); they are orthogonal on [-1,1] 
with the weight function 

w(OP)x):= (1 - X)a(1 + X) 

The monic Jacobi polynomials are defined by 

(2.2) j5na,fl):= 2n n! - p (0sl, n >, O. 
(n?+X)n n? O 

In the sequel, we give results related to the polynomials (2.1), as they seem to be in 
much wider use than (2.2). 

Slightly modifying Grosjean's notation [8], [9], we define the polynomials associ- 
ated with p(a,/) by 

(2.3) Wn(a,P)(x):= 1f P, 0'h(X) X- (a)(t) w(h(t)dt n >0 , 

where 

mO = J1 W(a T(t) dt = 2xB(a + 1, ,B + 1), 

so that 

WO(Oa)(x) = 0, Wl(a )(x) - 2 

W2( )(x) = + 2)_ [(X + 1)(X + 3)x + a2 -, ], 

etc. 
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In (2.3), the factor 1/mo is included in order to simplify the formulae presented 
below. 

Jacobi's functions of the second kind are defined for x i [-1, 1] by ([5, Vol. 2, 
Section 10.8]; or [18, Section 4.6]) 

(2.4) Qna )(x):= 2(X (x-)-a(X + i)-j1 Pn x-(t) dt, n >O. 

(We added the factor l/mo for convenience.) For x E [-1,11, we put 

Q(an )(x):= [Qna,?) (x + iO) + Qna ,)(x - iO)], n > 0. 

Functions (2.1), (2.3), and (2.4) are related in the following way: 

(2.5) Qn(a )(x) - 2(X - 1)a(X + 1)I Wn(a ')(X). 

They satisfy the same recurrence relation 

(2.6) yn+l -(AnX + Bn)Yn + CnYn-1 = 0, n > 1, 

where 

A (2n + X)2 n 2(n + 1)(n + X)' 

B (o(a2 -f2)(2n + X) 
n- 2(n + 1)(n + A)(2n + X - 1)' 

_ (n + a)(n + f3)(2n + A + 1) 
n- (n + 1)(n + A)(2n + X - 1) 

Grosjean's theory [9] yields 

(2.7) f' Wn( al(x) wp(a 9(x) (aA (x) dx 2XJ(n + a + 1)r(n + f + ) 
)np 

-1 ~~~~~~~~~n!.(2n + X)J'(n + X) fp 

n,p = 1,2, ....9 

where 

(2.8) u(aA)(x):= /w (x) < x < 1 

[2Q(a,Th(x)]2 +[ [/MO]2' 1 ~ 1 

and 

Q(a? O)(x) =2r0w(a (x) Ji w , dt 

- Icot(a7) _ A 
Fl 1 1- x 

2mo 4aw(a,P)(x) 21 -a 2 

(see (1.8) and [5, Vol. 2, Section 10.8]). 
2.1. Differential Equation. We show that the polynomial Wn(a), n 0,1, ..., 

satisfies the nonhomogeneous linear differential equation 

(1-x2) dY +[( 3)x + a - I] dy ++(n + 1)(n + A-l)y(x) 

(2.9) dX 2 dx 1)(n +()( 

-2X dPn(a, )(x dx 
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Observe that P(4af), Q(Oaf) are linearly independent solutions of the homogeneous 
equation 

(_X2d 2z dz 
(2.10) (1-x2) dx2 - [(X + 1)x + a - ]- + n(n + X)z = 0. 

Substituting the right-hand side of (2.5) for z in (2.10), making use of the above 
remark and of the formula 

(2.11) d Q(Oa)(X) = --XA(x - 1)al(X + 1)- 1, 

which can be deduced from an identity given in [5, Vol. 2, Section 10.8], we obtain 
Eq. (2.9) with y = W(OA. 

2.2. Differential-Difference Equations. The following identities hold: 

(1 - X2) ) -W(aP)(X) -PAP( ,p)(x) 

(n + X -i)( 2n + A - 1 x)Wa (x) 

+2(n 
+ a)(n + /3) o + (2n + A - 1 W(_1 (x) 

+ /3a ' 0WAP( 2(n + 1)(n X) 0P 
(2.12) =(n+l) + 2n+A+ Wn( (X) - 2n + X + 1 Wn( (x) 

_2(n + 1)(n + a)(n + OA W~)x 
(2n + A - 1)2 n- (x) 

+ 2(/3 - a)(n + 1)(n + A - 1) Wn(aI)(x) 
(2n + A) 2 - 1 

2(n + 1)(n + A - 1)2 W( ( 

(2n + A)2 Wn x) 

(1 + x) d [nWJ(0Vf )(x) -(n + a)Wn(_1')(x)] 

(2.13) +d [Pn() ( x ) + n + A1 Pn(fl) (x)j 

- n(n + A - 1)Wn(c')(x) + n(n + a)Wn(0')(x), 

(1 -x) d [nWn(ah)(x) +(n + fl)Wn(0i)(x)] 

(2.14) ?dx n + [ - 1 Pn-I )(x) - P )(x)j 

- n(n + A - W)n/(o')(x) - n(n + f)W("')(x) 

Clearly, the three equalities in (2.12) are equivalent. The first of them can be 
proved using (2.5), (2.11), and the identity 

(2n + A - 1)(1 - X2) dyn + n[(2n + X - 1)x + a - /3]yn(x) dx 

+2(n + a)(n + f)yn-1(x) = 0, 

satisfied by yn(x) = P,(af,)(x) and yn(x) = QnaP)(x) (ibid.). 
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Identity (2.13) is obtained in the following way. In the second equality of (2.12), 
replace n by n - 1, subtract the resulting equation from the first equation of (2.12) 
multiplied by n/(n + a), and use the relation [16, p. 262] 

(1 -x) d [(n + X - 1)Pna)(x) +(n + a)P,(af)(x)] 

= (n + X - 1)[(n + a)Pn(a-)(x) - npn( WIX) 

Equation (2.14) readily follows from (2.13) and from the symmetry properties 

pa,x)(_X) - (_i)np(8,na)(X), WO(a)(_X) = (_-1)nlyW(IOa)(x). Pn \X 
n Wn n 

2.3. Power Form. The following expansion can be obtained directly from the 
definition (2.3): 

(2.15) -00) a( 1( 2) -x n > 1, 
k=O 

where 

a(a'l_ (n + X)k+1(l - n)k(a + 2)n_ 
nk 2(n - 1)!(k + 1)!(a + 2)k 

(2.16) 
F k + I - n, n + k + X + I,a + 1,1|1 

X 4 3\ k+ a + 2,A+ 1,k+ 1) 

Note that substituting 1 - 2x/f3 for x in (2.15), multiplied by 2/(1 + A), and 
taking ,B -* o, we obtain the Askey-Wimp formula for the associated Laguerre 
polynomial L_ 1(x; 1) (see [2]). 

When A = 0, the 4F3(1) in (2.16) reduces to a balanced 3F2(1) and so can be 
summed, which gives 

(2.17) a()_ (_)k( - k)2k+l(1 -a)n-1 (-1) 2n!k! (I - a) k 

When A = 1, the 4F3(1) in (2.16) can be expressed in terms of a balanced 3F2(1) 
(see Eqs. (15) and (21) of [13, Section 5.2.4]) and also can be summed. The result in 
this case is 

ak()( 
- 

1)k( k 1)2k [(1?a)n + (1- a)n] a - 3#? nk (-1) 2n!k! (0)k?1 (--) k?+19 

( k (n - k + 1)2k E 1 a=,B=O. 
(k!)2 m=k+l m 

If A # 0 and the 4F3(1) in (2.16) is transformed using identities (2.4.1.7) and 
(2.4.1.2) from [17], we obtain 

a()_ A(n + A)k+l(l - n)k(a + 2)n-1 
(2.18) nk (n-1)!k!(a + 2)k(n + k + 1)(n-k + X-1) 

F k + l-n,n + k + A + 1,k-a + 1,l 1) X4 3l k + a + 2. n + k + 2k k- n-X + 211 
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This result, as well as (2.17), can also be deduced from the recurrence formula 

(n + k + 1)(n - k + X - 1)anakP) +(k + 1)(k - a + 
1)a(a-)l 

X(n + X)k+l(l - n)k(a + 2)-1 0 < k < -2 

- 
(n + A)n(-1) n-1 

an,n-1- 2n! 

which is obtained by substituting the right-hand side of (2.15) for y in the 
differential equation (2.9). 

An easy consequence of (2.15), (2.16) is 

w(a )(I) (n + A)(a + 2)n1 F(1 n, n + X + 1,a + 1,1 
2(n -1)! 4 3k a +2 X + 1,2 

which by Eqs. (15), (2), and (21) from [13, Section 5.2.4] can be simplified to 

Wn( (1) =XA[ (a + 1)n _ (S + i)n] a 1 O A 0 2 a() n! ( j' atO=X?' 

2 k=+ 1 k [+I3k] a=O 

(1 a- 
-X O 

2(n -1)! '=o. 

2.4. Jacobi Polynomial Form. Inserting the expansion (see [13, Section 11.3.4]) 

(1 -X _ (1 + a)k 
k 

(-k)j(X + 2j)(1 + )j_j P(/'3)(x) 
2 J -(1 +X)k k (1+a)1(X+k+ 1)1 

into (2.15) yields the formula 

n-1 

(2.19) En bk)P n > 1, 
k=O 

in which 

n_1 (I + a)n(n + A)(I- n)k(l + X)k_1(X + 2k) 
nk 2(n - 1)!(1 + X)n_l(l + a)k(n + X)k 

(2.20) Xn 

k- 
(I + k -n)p(l - n - k - A)p 

4 3 n - p+ a + 1,X + l,n - p+ I| 

A recurrence relation for the coefficients b,?C%'?) can be constructed by a method 
given in [12]; this result may also be obtained using another approach of Askey and 
Gasper [1]. Note that both methods start from the differential equation (2.9). We 
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have 

(k + X- 1)2(n + k)(n - k + X)(2k + X + 1) b(a8) 
2k+ X-2 n,k-1 

+(a - )(k + X)[(n + 1)(n + X - 1) + 3k(k + X)]bn(,) 

(k + a + 1)(k + 3 + l)(n + k + 2X)(n - k - X)(2k + X-1) b(a 7)= 
2k +X +2nkl 

(2.21) 1 < k < n-i, 

b(a ) 0o, b(a") (2n + X - 2) 2 

nfn n,n-1 2n(n +X -1) 

2.5. Beta Integral. In this subsection we examine the integral 

(2.22) ~Jn Jn (aAit, ) =| (1 - tO(i + t)vWJ(a")(t)dt, 

Rep > -1, Re v > -1, n > 0, 

which we call a beta integral of Wn($'. Inserting (2.15), (2.16) into (2.22), one 
obtains 

= -2?-1 B(p, + 1, v + 1)(a + 2)n_ 
n-=2al (n-1)! 

(2.23) it? (n + X)k+l(l - n)k(IA + 1)k 

k=0 (k + 1)!(a + 2)k(J + 1)k 

X 4F3 k + 1 - n,n + k + X + L a + 1,1 I 

where a it + v + 1. 
When X = 0 or 1, the 4F3(1) in (2.23) can be summed (see Subsection 2.3). The 

result is 

n C( - 1 3F2( 1 n,n+1 ,+1 = 
(n-i)! 

32 -aa+IX 
0 

an! K + a)n 3F2( 1+ a2' 1+ ) 

-(1- a)n 3F2( 1n '+ 1 i)j' a = -/3 + 0, 

=2C (!)2( + E 1 m = a = 0, 

where C:= 2?- 1B(I + 1, v + 1). 
Using the identity 

d 
[(I - t2)Z(t)] + [(- + I)t + 

p, - v]Z(t) = 0, 
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in which z(t):= (1 - t)Z(l + t)', and the last equation of (2.12), we obtain the 
second-order recurrence formula 

2(n + 1)(n + X)(n + X + ) 
(2n + X)2 n?1 

(2.24) + [( a _ ) 2(n + 1)(n + X - 1) - (X - 1)(ca + 1) + ] J 

[_ (2n + X)2 - 1 +L J] 

2(n + a)(n + /3)(n - a) ?, 
_2(n (a)(nA /s)() )Jn-1 = XIn, n > 1, 

(2n + X -12 

where 

(2.25) In In(a,f; p,):= f (1 - t)(1 + t)vP,(aP)(t)dt, n > O . 
-1 

The initial values are 

Jo = ? J1 = C(X + 1). 

Integral (2.25) is studied in [10]. It is known that 

(2.26) In = 
nC ! 3 2( + l,a+ 1 | 

See [13, Section 11.3.3]; or [10, p. 152]. In [11], we have shown that (2.25) satisfies 

(n + 1)(n + X)(n + a) In++ + [1A(n -A(n - 1) - n-A +, + 1] In 
(2n + X)2 

(2.27) _(n + a)(n + /9)(n + X -f 1)I =O, n 1 

(2n + X - 1)2 

with the starting values 

Io =2C, I = [a + 1 (X +1)(J 1) 

Here, A(n):= (n + /3 + 1)(n + X)(n + X - a)/(2n + X + 1). 
It is difficult to decide which method of computation of Jn using Eq. (2.24) is 

numerically stable. The asymptotic approximations for a fundamental set sl(n), 
s2(n) for the homogeneous form of (2.24) may be obtained from the Birkhoff-Trit- 
zinsky theory (see [19, Section B2]). We have 

sl(n) - n- 2t-a-29 S2(n) - (_,) nn-2p-#-2 n -- o. 

However, it is rather difficult to gain asymptotic information about J, n large. 
Satisfactory results can probably be achieved by the use of (2.24) in the forward 
direction for moderately large n, provided I - I and Iot - /3I are not very large. 

The same statement seems to be true for the equation (2.27), which has a 
fundamental set tl(n), t2(n) with the property 

tl(n) - na-2/-l, t2(n) - (_l)nn-2l 1 n -x o. 
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If 0 = 0, (2.24), (2.27) may be replaced by the first-order recurrence relations 

n(n + X + P)Jn +(n + a)(n - v- I)J- _ 
(2.28) 2 [(n + X)In,_j +(n + a)In*], 

and 

(2.29) (n + X + 1)(n + v + I)In* +(n + 13 + 1)(n + X - P)In*-j 
= 2?+1(2n + X + 1)(a + 1)n/n!, 

respectively. Here In*:= In(a + 1, , + 1; 0, v). In the derivation of (2.28), Eq. (2.13) 
was used. Equation (2.29) was obtained in [11]. 

3. Polynomials Associated with the Gegenbauer Polynomials. The Gegenbauer 
polynomials C,7 are a specialization of the Jacobi polynomials 

(3.1) (2 +y 1/2) -p(y 1/2, 1/2) y > -1/2, y 0 0, 

(3.1) 
~~2(n - 1)! 0,.= 2( ) (-1/2,-1/2) C 

(1/2) n 

We shall assume in the sequel that y 0 0. (It is well known that the nth polynomial 
associated with Cno is a multiple of the Chebyshev polynomial Un .) 

The polynomials associated with (3.1) are defined by 

1K1 
C"() 

7t) (I 
_ t )-/dt, Y> -2 0 

Y 
0, n > 0 

where 

K := 2yJ' (1- t2)Y-'12dt = 2v' r(y + 1/2)/r(y). 

The properties of Vn7, listed below, are obtained by means of the equation 

Vn= (2y + 1)n-1 W(y-1/2,y-1/2) 
(y + 1/2) n 

from the results on Wn( ao) given in Section 2. 
The orthogonality relation of the polynomials Vny reads 

1 ~~~~~~K, (2y) , 
VnY((x) VQf(x) u'y(x) dx= 2 8 n, p 1, 2 

J ~~~~~~2n!(n + -y) np, 

where 

U (x):= -X-(1-x2)1/2-y, -1 < x < 1. 

[x2F1(y + 1/2,1/2; 3/2; x2)]2 + 72IK2 

The value at x = 1 is 

V,,7(1) = [(2 y),/nn! - 1]/(2y - 1), y 0 1/2, 
fl 1 

y = 1/2. 
k=1 
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3.1. Recurrence Relation. 

V,,+(x) - 2 n J+ I n7(x) + 1 VnJJ(x) = O, n >1, 

VJ7(x) = O0 V17(x) = 1. 

3.2. Differential Properties. 

[( _ X2) d (2y- 3)x+ +(n + 1)(n + 2y - 1)jVny(x) = 2+C7(X), 

(1 _ X2) d V,Y(x)-Cny(x) = (n + 1)[xVn7(x) - Vny+(x)] 

= (n + 2y - 1)[VJ_1(x) - xVny(x)] 

= (n + 1)(n + 2 -1) -ni(X)1 

2(n + -y) [V'~>(X) -VnlXI 

3.3. Power Form. 

JQ'(x) - (1 + Y)n-1 [(n-1)/2] (-n)2k+1(2x)n2k1 
Vn(X) n! k=o k!(k - n)(1 - y - n)k 

X F( -k,n + y -k,1 
I 

1 n >1 

3.4. Gegenbauer Polynomial Form. The following expansion was first obtained by 
Watson (see [5, Vol. 1, Section 3.15.2]) and then rediscovered by Paszkowski [15], 
using another approach: 

[( - 1)/2] (n + y - 2k - 1)(1 - y)k(2y + n - k)kcy 
j32 /VlY 

= _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_-__ 

_ _ _ 

(3.2) k=O (n - k)k+1(7)k+l 

n>1. 

3.5. Beta Integral. Let 

jn i-in(y; 1, v):= f (1 -t)(1 + t)'CV7(t)dt, 

in-jn(Y;~~( I)=|(1t)'(1 + t)'V,Y(t) dt9 
(3.4) -1=n( 

;11IV : 

Rep > -1, Re v > -1, n > 0. 

From (3.1), (2.25), and (2.26), 

(3.5) i =2e (2y) nB(It + 1, p + 1) F (-n,n + 2y, I 
+II (3.5) i11 2 ~ n! 3F4 -y +1/2, a+1 

1 

with a := ,u + v + 1. Inserting (3.2) into (3.4), and using (3.5) yields 

= 2aB(IM + 1, v + 1) 

[(n -1)/2] 
(1 - y)k(2y + n - k)k(n + y - 2k - 1)(2y)n-2k-1 

(3.6) k=O (n - k)k+1(Y)k+1(n - 2k - 1)! 

X 3F2( 1+2k- n,n + 2y - 2k - 1ji + 1). 
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The beta integrals (3.4) satisfy the nonhomogeneous recurrence relation 

(n + 1)(n + 2y + a)jfl, + 2(M - v)(n + y)j,, -(n - a)(n + 2y -1)jn- 

= 2(n + y)in, n >1, 

with the starting values jo = 0, j, = 20B(P + 1, v + 1). The quantities (3.3) obey 

(n + 1)(n + a + I)in+1 + 2(M - v)(n + y)in 

-(n + 2y - 1)(n + 2y- a - 1)in- = 0, n > 1, 

io = 2?B(,u + 1, v + 1), i, 2-y(v - - 1)iol(a + 1). 

When P = 0, we have the following first-order relationships: 

n(n + 2y + v)jn +(n - v - 1)(n + 2y - 1)jn-l = 2y(i*n1 + in_2) 

(n + v + 1)i* +(n + 2y -)i* 1 = 2"+1(2n + 2y + 1)(2y + 2)n 1/n!, 
n n 1, 

where i*:= i(y + 1;0,v). 
Let us consider the integral 

hn--hn(y; A)= =V2n+l,(Y; PI ) 

= f1 (1- t2)AVy2j,+(t)dt, Re, > -1, n > 0. 

We will show that 

h B(1/2, IL + l)(y - - 1/2)2n(1 + Yy)n 
n (n + 1)!(M + 3/2)n 

(3.7) X3(3~x 4F 
nn + y + P + 3/2,1-yl 1) 

4 t3/2 -y + tL- nj + y,n + 21 

for t - y + 1/2 t {O,l,..n-1}, 

K,(y + 1/2)m(2y)m(1 - y)n-m(n + 2y + m + 1)n-m 
(3.8) 2(n + 1)n+l(Y)n+l 

for,u-y + 1/2 = m E{O,l, ,n}. 

Note that for ,u = y + n - 1/2, the same result is furnished by (3.7) and (3.8). (The 
function 4F3(1) in (3.7) reduces then to a balanced 3F2(1) and so can be summed.) 
Formula (3.8) was given by Paszkowski [15]; our proof of this form is based on a 
different idea. Formula (3.7) seems to be new. 

We start with 
(3.9) 

h~ -2~~1B~i+1,i+1) (1 Y)k(-2y - 2n)k(2k - 2n - -y)(2-y)2n-2kfk hn 
= 2 2g+ 

(11+ 1, ) k= (Y)k+l(-1 - 2n)k+1(2n - 2k)! k, 

where 

fk= 3F2 2k- 2n,2n -2k + y,,u + 1 
(cf. (3.6. +/2,2p+2 

(cf. (3.6)). 
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Let us assume first that , - y + 1/2 ? {0, 1,. ., n - 1). By virtue of Watson's 
theorem ([5, Vol. 1, Section 4.4]; or [13, Section 5.2.4]; or [17, p. 54]), we have 

(3.10) fk = (y - 
- 

1-/2)n-k(1/2)n-k (3.10) ~~~(IL + 3/2)n-k(-y + 1/2)n-k' 

After a little algebra we obtain 

B(1/2,I, + 1)(1 + Y)n-(y - Y - 1/2)n(2n + Y) (3.11 h~n n! (It + 3/2)n(2n + 1) F 

where 

1 n (2n - 2k + y)(-1/2 - I - n)k(-2y - 2n)k(l - Y)k(-n)k 
y + 2n k=O (3/2 - y + I - n)k(l + Y)k(-2n)k(l - y - n))k 

-Y-2n, 1 - y/2 - n, -1/2 - - n, -2y - 2n, 1 -y,1, -n 
7 F6 -y/2 -n, 3/2 -y + It -n, 1 + y,-2n, -y -2n, 1-y- n 

The above function 7F6(1) is well-poised; according to Whipple's theorem [17, p. 61] 
it can be expressed in terms of a balanced 4F3(1), namely 

F- (2n + 1)(n + y) F(-n, n + y + It + 3/2,- y, 11 
(n + 1)(2n + y) 43k3/2 - y + u - n,1 + y,n + 21. 

Using this result in (3.11) implies (3.7). 
Now let ,:= y + m - 1/2 and m e {0, 1,..., n }. Equation (3.10) can be written 

as 

KY(2n - 2k)! (-m)n-k(y + 1/2)m 

fk = B(1/2,M + 1)(2y)2,n2k (m - k)!(y + n - k)m+l 

Inserting this in (3.9) yields, after some manipulations, 

K,(y + 1/2)m(l - Y)n(2y + n + l)n 
(3 .12) -n 2(n + 1)n+1(Y)n++1(Y)m+l 

where 

n 
(Y)k(2k + y)(n + 1)k(-y - n)k(-M)k 

k-O k!(y + m + I)k(Y - n)k(2y + n + 1)k 

= F {y Y Y + 1/2,n l,-y-n,-m 

- 
5 4( y/2,y - n,2y + 1,y + m + ) 

The function 5F4(1) is well-poised and so can be summed by Dougall's theorem [17, 
p. 56]; the result is 

( Y) m+i1(2 Y) m 

(y - n)n(2y + n + I)m 

and (3.8) readily follows. 
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Further explicit formulae for ji(y; x, v) may be obtained for some special values 
of ,u or P. For instance, 

j,,(y; - 1/2, P) 

+/2B(Y + 1/2,v + 1)(1 + 2y)n-(y - v - 1/2)n-1 - Y)n-1 

yn!(y + v + 3/2)n 

x 5 F4( -n,( + 2y-2-2n)/4,(3 + 2y- 2- 2n)/4,)1, I 
5 \(7 - 2-y + 21s - 2n)/4, (5 - 2-y + 21s - 2n)/4,2-y + 1,1I - n| 

We have written the 1 - n parameters in the 5F4(1) (which is nearly-poised, by the 
way) only to indicate that the sum terminates after n terms. 
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